

Programming
Logic &
Design

Starting Out withSixth
Edition

A01_GADD1912_06_SE_FM.indd 1 18/12/21 12:41 PM

A01_GADD1912_06_SE_FM.indd 2 18/12/21 12:41 PM

This page intentionally left blank

 Contents iii

 Sixth
Edition

 Programming
Logic &
Design

 Starting Out with

 Tony Gaddis
 Haywood Community College

A01_GADD1912_06_SE_FM.indd 3 18/12/21 12:41 PM

Content Development: Dawn Murrin
Content Management: Tracy Johnson
Content Production: Ishan Chaudhary and Carole Snyder
Product Management: Holly Stark
Product Marketing: Wayne Stevens
Rights and Permissions: Anjali Singh

Please contact https://support.pearson.com/getsupport/s/ with any queries on this content.

Cover Image by Patrick de grijs/123RF.

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained in the
documents and related graphics published as part of the services for any purpose. All such documents and related graphics
are provided “as is” without warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim all warranties
and conditions with regard to this information, including all warranties and conditions of merchantability, whether express,
implied or statutory, fitness for a particular purpose, title and non-infringement. In no event shall Microsoft and/or its
respective suppliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting from
loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in
connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical errors. Changes
are periodically added to the information herein. Microsoft and/or its respective suppliers may make improvements and/or
changes in the product(s) and/or the program(s) described herein at any time. Partial screen shots may be viewed in full
within the software version specified.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries. This
book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

Copyright © 2023, 2019 by Pearson Education, Inc. or its affiliates, 221 River Street, Hoboken, NJ 07030. All Rights
Reserved. Manufactured in the United States of America. This publication is protected by copyright, and permission should
be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise. For information regarding
permissions, request forms, and the appropriate contacts within the Pearson Education Global Rights and Permissions
department, please visit www.pearsoned.com/permissions/.

Acknowledgments of third-party content appear on the appropriate page within the text.

PEARSON is exclusive trademarks owned by Pearson Education, Inc. or its affiliates in the U.S. and/or other countries.

Unless otherwise indicated herein, any third-party trademarks, logos, or icons that may appear in this work are the property
of their respective owners, and any references to third-party trademarks, logos, icons, or other trade dress are for
demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement,
authorization, or promotion of Pearson’s products by the owners of such marks, or any relationship between the owner and
Pearson Education, Inc., or its affiliates, authors, licensees, or distributors.

Library of Congress Cataloging-in-Publication Data
Starting Out with Programming Logic & Design
Library of Congress Cataloging in Publication Control Number: 2021057225

Rental:
ISBN-10: 0-13-760214-6
ISBN-13: 978-0-13-760214-8

Print offer:
ISBN-10: 0-13-760191-3
ISBN-13: 978-0-13-760191-2

ScoutAutomatedPrintCode

A01_GADD1912_06_SE_FM.indd 4 18/12/21 12:41 PM

https://support.pearson.com/getsupport/s/
www.pearsoned.com/permissions/
www.pearsoned.com/permissions/
https://support.pearson.com/getsupport/s/

 Contents v

We embrace the many dimensions of diversity, including but not limited to race, ethnicity, gender,
sex, sexual orientation, socioeconomic status, ability, age, and religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the potential to deliver
opportunities that improve lives and enable economic mobility. As we work with authors to create
content for every product and service, we acknowledge our responsibility to demonstrate inclusivity
and incorporate diverse scholarship so that everyone can achieve their potential through learning.
As the world’s leading learning company, we have a duty to help drive change and live up to our
purpose to help more people create a better life for themselves and to create a better world.

Our ambition is to purposefully contribute to a world where:

Accessibility
We are also committed to providing products that
are fully accessible to all learners. As per Pearson’s
guidelines for accessible educational Web media,
we test and retest the capabilities of our products
against the highest standards for every release,
following the WCAG guidelines in developing new
products for copyright year 2022 and beyond.

You can learn more about Pearson’s
commitment to accessibility at

https://www.pearson.com/us/accessibility.html

Contact Us
While we work hard to present unbiased, fully
accessible content, we want to hear from you about
any concerns or needs with this Pearson product so
that we can investigate and address them.

Please contact us with concerns about any
potential bias at
https://www.pearson.com/report-bias.html

For accessibility-related issues, such as using
assistive technology with Pearson products,
alternative text requests, or accessibility

documentation, email the Pearson Disability Support
team at disability.support@pearson.com

Pearson is dedicated to creating bias-free content that reflects the diversity,
depth, and breadth of all learners’ lived experiences.

Pearson’s Commitment
to Diversity, Equity,
and Inclusion

• Everyone has an equitable and lifelong opportunity
to succeed through learning.

• Our educational content accurately reflects the
histories and lived experiences of the learners
we serve.

• Our educational products and services are inclusive
and represent the rich diversity of learners.

• Our educational content prompts deeper
discussions with students and motivates them to
expand their own learning (and worldview).

A01_GADD1912_06_SE_FM.indd 5 18/12/21 12:41 PM

https://www.pearson.com/us/accessibility.html
https://www.pearson.com/report-bias.html
https://www.pearson.com/report-bias.html
https://www.pearson.com/us/accessibility.html
https://www.pearson.com/report-bias.html

vi Contents

vi

Preface xiii

Acknowledgments xxi

About the Author xxv

Chapter 1 Introduction to Computers and Programming 1

Chapter 2 Input, Processing, and Output 27

Chapter 3 Decision Structures and Boolean Logic 103

Chapter 4 Repetition Structures 161

Chapter 5 Modules 227

Chapter 6 Functions 285

Chapter 7 Input Validation 335

Chapter 8 Arrays 353

Chapter 9 Sorting and Searching Arrays 419

Chapter 10 Files 469

Chapter 11 Menu-Driven Programs 543

Chapter 12 Text Processing 595

Chapter 13 Recursion 623

Chapter 14 Object-Oriented Programming 649

Chapter 15 GUI Applications and Event-Driven Programming 715

Appendix A ASCII/Unicode Characters 747

Appendix B Flowchart Symbols 749

Appendix C Pseudocode Reference 751

Appendix D Converting Decimal Numbers to Binary 765

Appendix E Answers to Checkpoint Questions 767

Index 783

Brief Contents

A01_GADD1912_06_SE_FM.indd 6 18/12/21 12:41 PM

 Contents vii

vii

Contents

Preface xiii
Acknowledgments xxi
About the Author xxv

Chapter 1 Introduction to Computers and Programming 1
 1.1 Introduction . 1
 1.2 Hardware . 2
 1.3 How Computers Store Data . 7
 1.4 How a Program Works . 12
 1.5 Types of Software . 20

Review Questions . 21

Chapter 2 Input, Processing, and Output 27
 2.1 Designing a Program . 27
 2.2 Output, Input, and Variables . 34
 2.3 Variable Assignment and Calculations . 43

IN THE SPOTLIGHT: Calculating Cell Phone Overage Fees 47
IN THE SPOTLIGHT: Calculating a Percentage . 49
IN THE SPOTLIGHT: Calculating an Average . 52
IN THE SPOTLIGHT: Converting a Math Formula to a Programming Statement . . . 55

 2.4 Variable Declarations and Data Types. 57
 2.5 Named Constants . 62
 2.6 Hand Tracing a Program . 64
 2.7 Documenting a Program . 65

IN THE SPOTLIGHT: Using Named Constants, Style Conventions,
and Comments . 66

 2.8 Designing Your First Program . 68
 2.9 Focus on Languages: Java, Python, and C++ . 72

Review Questions . 92
Debugging Exercises . 97
Programming Exercises . 98

A01_GADD1912_06_SE_FM.indd 7 18/12/21 12:41 PM

viii Contents

Chapter 3 Decision Structures and Boolean Logic 103
 3.1 Introduction to Decision Structures . 103

IN THE SPOTLIGHT: Using the If-Then Statement . 110
 3.2 Dual Alternative Decision Structures . 113

IN THE SPOTLIGHT: Using the If-Then-Else Statement 114
 3.3 Comparing Strings . 118
 3.4 Nested Decision Structures . 122

IN THE SPOTLIGHT: Multiple Nested Decision Structures 125
 3.5 The Case Structure . 129

IN THE SPOTLIGHT: Using a Case Structure . 132
 3.6 Logical Operators . 134
 3.7 Boolean Variables . 141
 3.8 Focus on Languages: Java, Python, and C++ . 142

Review Questions . 154
Debugging Exercises . 158
Programming Exercises . 158

Chapter 4 Repetition Structures 161
 4.1 Introduction to Repetition Structures . 161
 4.2 Condition-Controlled Loops: While, Do-While, and Do-Until 162

IN THE SPOTLIGHT: Designing a While Loop . 167
IN THE SPOTLIGHT: Designing a Do-While Loop . 174

 4.3 Count-Controlled Loops and the For Statement 179
IN THE SPOTLIGHT: Designing a Count-Controlled Loop

with the For Statement . 189
 4.4 Calculating a Running Total . 199
 4.5 Sentinels . 203

IN THE SPOTLIGHT: Using a Sentinel . 204
 4.6 Nested Loops . 207
 4.7 Focus on Languages: Java, Python, and C++ . 210

Review Questions . 219
Debugging Exercises . 222
Programming Exercises . 223

Chapter 5 Modules 227
 5.1 Introduction to Modules . 227
 5.2 Defining and Calling a Module . 230

IN THE SPOTLIGHT: Defining and Calling Modules . 239
 5.3 Local Variables . 244
 5.4 Passing Arguments to Modules . 247

IN THE SPOTLIGHT: Passing an Argument to a Module 251

A01_GADD1912_06_SE_FM.indd 8 18/12/21 12:41 PM

 Contents ix

IN THE SPOTLIGHT: Passing an Argument by Reference 257
 5.5 Global Variables and Global Constants . 260

IN THE SPOTLIGHT: Using Global Constants . 261
 5.6 Focus on Languages: Java, Python, and C++ . 265

Review Questions . 276
Debugging Exercises . 280
Programming Exercises . 281

Chapter 6 Functions 285
 6.1 Introduction to Functions: Generating Random Numbers 285

IN THE SPOTLIGHT: Using Random Numbers . 289
IN THE SPOTLIGHT: Using Random Numbers to Represent Other Values 292

 6.2 Writing Your Own Functions . 294
IN THE SPOTLIGHT: Modularizing with Functions . 300

 6.3 More Library Functions . 309
 6.4 Focus on Languages: Java, Python, and C++ . 319

Review Questions . 326
Debugging Exercises . 329
Programming Exercises . 330

Chapter 7 Input Validation 335
 7.1 Garbage In, Garbage Out . 335
 7.2 The Input Validation Loop . 336

IN THE SPOTLIGHT: Designing an Input Validation Loop 338
 7.3 Defensive Programming . 343
 7.4 Focus on Languages: Java, Python, and C++ . 344

Review Questions . 348
Debugging Exercises . 350
Programming Exercises . 351

Chapter 8 Arrays 353
 8.1 Array Basics . 353

IN THE SPOTLIGHT: Using Array Elements in a Math Expression 360
 8.2 Sequentially Searching an Array . 367
 8.3 Processing the Contents of an Array . 373

IN THE SPOTLIGHT: Processing an Array . 380
 8.4 Parallel Arrays . 387

IN THE SPOTLIGHT: Using Parallel Arrays . 388
 8.5 Two-Dimensional Arrays . 392

IN THE SPOTLIGHT: Using a Two-Dimensional Array . 395
 8.6 Arrays of Three or More Dimensions . 399

A01_GADD1912_06_SE_FM.indd 9 18/12/21 12:41 PM

x Contents

 8.7 Focus on Languages: Java, Python, and C++ . 401
Review Questions . 411
Debugging Exercises . 414
Programming Exercises . 415

Chapter 9 Sorting and Searching Arrays 419
 9.1 The Bubble Sort Algorithm . 419

IN THE SPOTLIGHT: Using the Bubble Sort Algorithm . 426
 9.2 The Selection Sort Algorithm . 433
 9.3 The Insertion Sort Algorithm . 439
 9.4 The Binary Search Algorithm . 445

IN THE SPOTLIGHT: Using the Binary Search Algorithm 449
 9.5 Focus on Languages: Java, Python, and C++ . 451

Review Questions . 464
Debugging Exercise . 467
Programming Exercises . 467

Chapter 10 Files 469
 10.1 Introduction to File Input and Output . 469
 10.2 Using Loops to Process Files. 481

IN THE SPOTLIGHT: Working with Files . 486
 10.3 Using Files and Arrays . 490
 10.4 Processing Records . 491

IN THE SPOTLIGHT: Adding and Displaying Records . 496
IN THE SPOTLIGHT: Searching for a Record . 500
IN THE SPOTLIGHT: Modifying Records . 502
IN THE SPOTLIGHT: Deleting Records . 506

 10.5 Control Break Logic . 509
IN THE SPOTLIGHT: Using Control Break Logic . 510

 10.6 Focus on Languages: Java, Python, and C++ . 516
Review Questions . 536
Debugging Exercises . 539
Programming Exercises . 540

Chapter 11 Menu-Driven Programs 543
 11.1 Introduction to Menu-Driven Programs . 543
 11.2 Modularizing a Menu-Driven Program . 554
 11.3 Using a Loop to Repeat the Menu . 559

IN THE SPOTLIGHT: Designing a Menu-Driven Program 564
 11.4 Multiple-Level Menus . 578
 11.5 Focus on Languages: Java, Python, and C++ . 584

A01_GADD1912_06_SE_FM.indd 10 18/12/21 12:41 PM

 Contents xi

Review Questions . 590
Programming Exercises . 592

Chapter 12 Text Processing 595
 12.1 Introduction . 595
 12.2 Character-by-Character Text Processing . 597

IN THE SPOTLIGHT: Validating a Password . 600
IN THE SPOTLIGHT: Formatting and Unformatting Telephone Numbers 606

 12.3 Focus on Languages: Java, Python, and C++ . 611
Review Questions . 617
Debugging Exercises . 619
Programming Exercises . 620

Chapter 13 Recursion 623
 13.1 Introduction to Recursion . 623
 13.2 Problem Solving with Recursion . 626
 13.3 Examples of Recursive Algorithms . 630
 13.4 Focus on Languages: Java, Python, and C++ . 640

Review Questions . 645
Programming Exercises . 647

Chapter 14 Object-Oriented Programming 649
 14.1 Procedural and Object-Oriented Programming 649
 14.2 Classes . 653
 14.3 Using the Unified Modeling Language to Design Classes 664
 14.4 Finding the Classes and Their Responsibilities in a Problem 667

IN THE SPOTLIGHT: Finding the Classes in a Problem . 667
IN THE SPOTLIGHT: Determining Class Responsibilities 671

 14.5 Inheritance . 677
 14.6 Polymorphism . 685
 14.7 Focus on Languages: Java, Python, and C++ . 689

Review Questions . 707
Programming Exercises . 710

Chapter 15 GUI Applications and Event-Driven
Programming 715

 15.1 Graphical User Interfaces . 715
 15.2 Designing the User Interface for a GUI Program 718

IN THE SPOTLIGHT: Designing a Window . 723
 15.3 Writing Event Handlers . 725

A01_GADD1912_06_SE_FM.indd 11 18/12/21 12:41 PM

xii Contents

IN THE SPOTLIGHT: Designing an Event Handler . 728
 15.4 Designing Apps for Mobile Devices . 731
 15.5 Focus on Languages: Java, Python, and C++ . 740

Review Questions . 741
Programming Exercises . 744

Appendix A ASCII/Unicode Characters 747
Appendix B Flowchart Symbols 749
Appendix C Pseudocode Reference 751
Appendix D Converting Decimal Numbers to Binary 765
Appendix E Answers to Checkpoint Questions 767

Index 783

A01_GADD1912_06_SE_FM.indd 12 18/12/21 12:41 PM

 Contents xiii

xiii

Preface

Welcome to Starting Out with Programming Logic and Design, Sixth Edition.
This book uses a language-independent approach to teach programming
concepts and problem-solving skills, without assuming any previous pro-

gramming experience. By using easy-to-understand pseudocode, flowcharts, and other
tools, the student learns how to design the logic of programs without the complication
of language syntax.

Fundamental topics such as data types, variables, input, output, control structures,
modules, functions, arrays, and files are covered as well as object-oriented concepts,
GUI development, and event-driven programming. As with all the books in the Starting
Out with . . . series, this text is written in clear, easy-to-understand language that stu-
dents find friendly and inviting.

Each chapter presents a multitude of program design examples. Short examples that
highlight specific programming topics are provided, as well as more involved examples
that focus on problem solving. Each chapter includes at least one In the Spotlight
 section that provides step-by-step analysis of a specific problem and demonstrates a
solution to that problem.

This book is ideal for a programming logic course that is taught as a precursor to a
language-specific introductory programming course, or for the first part of an intro-
ductory programming course in which a specific language is taught.

Changes in the Sixth Edition
Previous editions of this book introduced modules, which are procedures that do not
return a value, in Chapter 3. Feedback from adopters and reviewers indicate that stu-
dents sometimes have trouble learning about modules before they have been exposed
to control structures, such as If statements and loops. In this edition, the chapter on
modules has been moved to Chapter 5. Now, the students will learn about control
structures, then modules, and then value-returning functions. This improved pedagogy
gradually introduces the students to the different ways a program’s flow of execution
can be directed.

Brief Overview of Each Chapter

Chapter 1: Introduction to Computers and Programming

This chapter begins by giving a concise and easy-to-understand explanation of how
computers work, how data is stored and manipulated, and why we write programs in
high-level languages.

A01_GADD1912_06_SE_FM.indd 13 18/12/21 12:41 PM

Chapter 2: Input, Processing, and Output

This chapter introduces the program development cycle, data types, variables, and
sequence structures. The student learns to use pseudocode and flowcharts to design
simple programs that read input, perform mathematical operations, and produce
screen output.

Chapter 3: Decision Structures and Boolean Logic

In this chapter students explore relational operators and Boolean expressions and are
shown how to control the flow of a program with decision structures. The If-Then,
If-Then-Else, and If-Then-Else If statements are covered. Nested decision struc-
tures, logical operators, and the case structure are also discussed.

Chapter 4: Repetition Structures

This chapter shows the student how to use loops to create repetition structures. The
While, Do-While, Do-Until, and For loops are presented. Counters, accumulators,
running totals, and sentinels are also discussed.

Chapter 5: Modules

This chapter demonstrates the benefits of modularizing programs and using the top-
down design approach. The student learns to define and call modules, pass arguments
to modules, and use local variables. Hierarchy charts are introduced as a design tool.

Chapter 6: Functions

This chapter begins by discussing common library functions, such as those for generat-
ing random numbers. After learning how to call library functions and how to use val-
ues returned by functions, the student learns how to define and call his or her own
functions.

Chapter 7: Input Validation

This chapter discusses the importance of validating user input. The student learns to
write input validation loops that serve as error traps. Defensive programming and the
importance of anticipating obvious as well as unobvious errors is discussed.

Chapter 8: Arrays

In this chapter the student learns to create and work with one- and two-dimensional
arrays. Many examples of array processing are provided including examples illustrat-
ing how to find the sum, average, and highest and lowest values in an array, and how
to sum the rows, columns, and all elements of a two-dimensional array. Programming
techniques using parallel arrays are also demonstrated.

Chapter 9: Sorting and Searching Arrays

In this chapter the student learns the basics of sorting arrays and searching for data
stored in them. The chapter covers the bubble sort, selection sort, insertion sort, and
binary search algorithms.

xiv Preface

A01_GADD1912_06_SE_FM.indd 14 18/12/21 12:41 PM

Chapter 10: Files

This chapter introduces sequential file input and output. The student learns to read and
write large sets of data, store data as fields and records, and design programs that work
with both files and arrays. The chapter concludes by discussing control break processing.

Chapter 11: Menu-Driven Programs

In this chapter the student learns to design programs that display menus and execute
tasks according to the user’s menu selection. The importance of modularizing a menu-
driven program is also discussed.

Chapter 12: Text Processing

This chapter discusses text processing at a detailed level. Algorithms that step through
the individual characters in a string are discussed, and several common library func-
tions for character and text processing are introduced.

Chapter 13: Recursion

This chapter discusses recursion and its use in problem solving. A visual trace of recur-
sive calls is provided, and recursive applications are discussed. Recursive algorithms
for many tasks are presented, such as finding factorials, finding a greatest common
denominator (GCD), summing a range of values in an array, and performing a binary
search. The classic Towers of Hanoi example is also presented.

Chapter 14: Object-Oriented Programming

This chapter compares procedural and object-oriented programming practices. It cov-
ers the fundamental concepts of classes and objects. Fields, methods, access specifica-
tion, constructors, accessors, and mutators are discussed. The student learns how to
model classes with UML and how to find the classes in a particular problem.

Chapter 15: GUI Applications and Event-Driven Programming

This chapter discusses the basic aspects of designing a GUI application. Building graph-
ical user interfaces with visual design tools (such as Visual Studio® or NetBeans™) is
discussed. The student learns how events work in a GUI application and how to write
event handlers.

Appendix A: ASCII/Unicode Characters

This appendix lists the ASCII character set, which is the same as the first 127 Unicode
character codes.

Appendix B: Flowchart Symbols

This appendix shows the flowchart symbols that are used in this book.

Appendix C: Pseudocode Reference

This appendix provides a quick reference for the pseudocode language that is used in
the book.

 Preface xv

A01_GADD1912_06_SE_FM.indd 15 18/12/21 12:41 PM

Appendix D: Converting Decimal Numbers to Binary

This appendix uses a simple tutorial to demonstrate how to convert a decimal number
to binary.

Appendix E: Answers to Checkpoint Questions

This appendix provides answers to the Checkpoint questions that appear throughout
the text.

Organization of the Text
The text teaches programming logic and design in a step-by-step manner. Each chapter
covers a major set of topics and builds knowledge as students progress through the
book. Although the chapters can be easily taught in their existing sequence, there is
some flexibility. Figure P-1 shows chapter dependencies. Each box represents a chapter
or a group of chapters. A chapter to which an arrow points must be covered before the
chapter from which the arrow originates. The dotted line indicates that only a portion
of Chapter 10 depends on information presented in Chapter 8.

Features of the Text
Concept Statements. Each major section of the text starts with a concept state-
ment. This statement concisely summarizes the main point of the section.

Example Programs. Each chapter has an abundant number of complete and partial
example programs, each designed to highlight the current topic. Pseudocode, flow-
charts, and other design tools are used in the example programs.

In the Spotlight. Each chapter has one or
more In the Spotlight case studies that provide
detailed, step-by-step analysis of problems, and
show the student how to solve them.

xvi Preface

A01_GADD1912_06_SE_FM.indd 16 18/12/21 12:41 PM

NOTE: Notes appear at several places throughout the text. They are short explana-
tions of interesting or often misunderstood points relevant to the topic at hand.

Figure P-1 Chapter dependencies

Chapters 1–6
(Cover in Order)

Chapter 7
Input Validation

Chapter 10
Files

Chapter 13
Recursion

Chapter 15
GUI Applications and

Event-Driven
Programming

Some Topics in
Chapter 10 Depend on

Chapter 8
Chapter 11

Menu-Driven
Programs

Chapter 8
Arrays

Chapter 9
Sorting and Searching

Arrays

Chapter 12
Text Processing

Depend on

Chapter 14
Object-Oriented
Programming

Depend On

TIP: Tips advise the student on the best techniques for approaching different pro-
gramming or animation problems.

VideoNotes. A series of online videos, developed specifically for this book, are avail-
able for viewing at www.pearson.com/cs-resources. Icons appear throughout the
text alerting the student to videos about specific topics.

VideoNote

WARNING! Warnings caution students about programming techniques or prac-
tices that can lead to malfunctioning programs or lost data.

 Preface xvii

A01_GADD1912_06_SE_FM.indd 17 18/12/21 12:41 PM

www.pearson.com/cs-resources
www.pearson.com/cs-resources

Programming Language Companions. Many of the pseudocode programs
shown in this book have also been written in Java, Python, and C++. These programs
appear in the programming language companions that are available at www.pear-
son.com/cs-resources. Icons appear next to each pseudocode program that also
appears in the language companions.

Checkpoints. Checkpoints are questions placed at intervals throughout each chapter.
They are designed to query the student’s knowledge quickly after learning a new topic.

Review Questions. Each chapter presents a thorough and diverse set of Review
Questions and exercises. They include Multiple Choice, True/False, Short Answer, and
Algorithm Workbench.

Debugging Exercises. Most chapters provide a set of Debugging Exercises in which
the student examines a set of pseudocode algorithms and identifies logical errors.

Programming Exercises. Each chapter offers a pool of Programming Exercises
designed to solidify the student’s knowledge of the topics currently being studied.

Supplements

Student Online Resources

Many student resources are available for this book from the publisher. The following
items are available on the Gaddis Series resource page at www.pearson.com/cs-
resources:

●● Access to the book’s companion VideoNotes

An extensive series of online VideoNotes have been developed to accompany this
text. Throughout the book, VideoNote icons alert the student to videos covering
specific topics. Additionally, one programming exercise at the end of each chapter
has an accompanying VideoNote explaining how to develop the problem’s solution.

●● Access to the Language Companions for Python, Java, and C++

Programming language companions specifically designed to accompany this text-
book are available for download. The companions introduce the Java™, Python®,
and C++ programming languages, and correspond on a chapter-by-chapter basis
with the textbook. Many of the pseudocode programs that appear in the text-
book also appear in the companions, implemented in a specific programming
language.

●● A link to download the Flowgorithm flowcharting application

Flowgorithm is a free application, developed by Devin Cook at Sacramento State
University, which allows you to create programs using simple flowcharts. It sup-
ports the flowcharting conventions used in this textbook, as well as several other
standard conventions. When you create a flowchart with Flowgorithm, you can
execute the program and generate Gaddis Pseudocode. You can also generate
source code in Java, Python, Visual Basic, C#, Ruby, JavaScript, and several other
languages. For more information, see www.flowgorithm.org.

xviii Preface

A01_GADD1912_06_SE_FM.indd 18 18/12/21 12:41 PM

www.pearson
www.pearson
www.flowgorithm.org
https://support.pearson.com/getsupport/s/
https://support.pearson.com/getsupport/s/
www.flowgorithm.org
www.pearson
www.pearson

●● A link to download the RAPTOR flowcharting environment

RAPTOR is a flowchart-based programming environment developed by the US
Air Force Academy Department of Computer Science. For more information, see
https://raptor.martincarlisle.com.

Instructor Resources

The following supplements are available to qualified instructors only:

●● Answers to all of the Review Questions
●● Solutions for the Programming Exercises
●● PowerPoint® presentation slides for each chapter
●● Test bank

Visit the Pearson Instructor Resource Center www.pearson.com or contact your local
Pearson representative for information on how to access them.

 Preface xix

A01_GADD1912_06_SE_FM.indd 19 18/12/21 12:41 PM

https://raptor.martincarlisle.com
www.pearson.com
www.pearson.com
https://raptor.martincarlisle.com

A01_GADD1912_06_SE_FM.indd 20 18/12/21 12:41 PM

This page intentionally left blank

xxi

Acknowledgments

There have been many helping hands in the development and publication of this text.
I would like to thank the following faculty reviewers:

Reviewers for This Edition

Taz Daughtrey
Central Virginia Community College

Donna Sandsmark
University of California, San Diego

Holly Tajlil
Sacramento State University

Deborah Wilson
Ashland University

Reviewers of Previous Editions

Reni Abraham
Houston Community College

Alan Anderson
Gwinnett Technical College

Cherie Aukland
Thomas Nelson Community College

Steve Browning
Freed Hardeman University

John P. Buerck
Saint Louis University

Jill Canine
Ivy Tech Community College of Indiana

Tony Cantrell
Georgia Northwestern Technical College

Steven D. Carver
Ivy Tech Community College

Stephen Robert Cheskiewicz
Keystone College and Wilkes University

Katie Danko
Grand Rapids Community College

A01_GADD1912_06_SE_FM.indd 21 18/12/21 12:41 PM

Richard J. Davison
College of the Albemarle

Sameer Dutta
Grambling State University

Norman P. Hahn
Thomas Nelson Community College

John Haley
Athens Technical College

Keith Hallmark
Calhoun Community College

Ronald J. Harkins
Miami University, OH

Dianne Hill
Jackson College

Vai Kumar
Pensacola State College

Coronicca Oliver
Coastal Georgia Community College

Robert S. Overall, III
Nashville State Community College

Dale T. Pickett
Baker College of Clinton Township

Tonya Pierce
Ivy Tech Community College

J. Shawn Pope
Tulsa Community College

Maryam Rahnemoonfar
Texas A&M University

Linda Reeser
Arizona Western College

Homayoun Sharafi
Prince George’s Community College

Emily Shepard
Central Carolina Community College

Larry Strain
Ivy Tech Community College–Bloomington

Donald Stroup
Ivy Tech Community College

xxii Acknowledgments

A01_GADD1912_06_SE_FM.indd 22 18/12/21 12:41 PM

 Acknowledgments xxiii

John Thacher
Gwinnett Technical College

Jim Turney
Austin Community College

Scott Vanselow
Edison State College

I would like to thank the faculty, staff, and administration at Haywood Community
College for the opportunity to build a career teaching the subjects that I love. I would
also like to thank my family and friends for their support in all my projects.

It is a great honor to be published by Pearson, and I am extremely fortunate to have
Tracy Johnson as my Content Manager. She and her colleagues Holly Stark, Erin
 Sullivan, Sandra Rodriguez, Wayne Stevens, Scott Disanno, Bob Engelhardt, Ishan
Chaudhary, Carole Snyder, and Mahalakshmi Usha have worked tirelessly to produce
and promote this book. Thanks to you all!

A01_GADD1912_06_SE_FM.indd 23 18/12/21 12:41 PM

A01_GADD1912_06_SE_FM.indd 24 18/12/21 12:41 PM

This page intentionally left blank

 Contents xxv

xxv

About the Author

Tony Gaddis is the principal author of the Starting Out with . . . series of textbooks.
Tony has twenty years of experience teaching computer science courses at Haywood
Community College. He is a highly acclaimed instructor who was previously selected
as the North Carolina Community College “Teacher of the Year” and has received the
Teaching Excellence award from the National Institute for Staff and Organizational
Development. The Starting Out with . . . series includes introductory books covering
Programming Logic and Design, C++, Java, Microsoft® Visual Basic, C#®, Python,
App Inventor, and Alice, all published by Pearson.

A01_GADD1912_06_SE_FM.indd 25 18/12/21 12:41 PM

A01_GADD1912_06_SE_FM.indd 26 18/12/21 12:41 PM

This page intentionally left blank

Programming
Logic &
Design

Starting Out withSixth
Edition

A01_GADD1912_06_SE_FM.indd 27 18/12/21 12:41 PM

A01_GADD1912_06_SE_FM.indd 28 18/12/21 12:41 PM

This page intentionally left blank

1

 C
H

A
PT

ER

 TOPICS

 1. 1 Introduction

 1. 2 Hardware

 1. 3 How Computers Store Data

 1. 4 How a Program Works

 1. 5 Types of Software

 Introduction to Computers
and Programming 1

 Introduction
 Think about some of the different ways that people use computers. In school, students
use computers for tasks such as writing papers, searching for articles, sending email, and
participating in online classes. At work, people use computers to analyze data, make pre-
sentations, conduct business transactions, communicate with customers and coworkers,
control machines in manufacturing facilities, and many other things. At home, people
use computers for tasks such as paying bills, shopping online, communicating with
friends and family, and playing computer games. And don’t forget that smart phones,
tablets, home automation devices, car navigation systems, and many other devices are
computers too. The uses of computers are almost limitless in our everyday lives.

 Computers can do such a wide variety of things because they can be programmed. This
means that computers are not designed to do just one job, but to do any job that their
programs tell them to do. A program is a set of instructions that a computer follows
to perform a task. For example, Figure 1- 1 shows screens from two commonly used
programs: Microsoft Word and PowerPoint.

 1. 1

M01_GADD1912_06_SE_C01.indd 1 08/12/21 10:35 AM

2 Chapter 1 Introduction to Computers and Programming

Programs are commonly referred to as software. Software is essential to a computer
because without software, a computer can do nothing. All of the software that we use to
make our computers useful is created by individuals known as programmers or software
developers. A programmer, or software developer, is a person with the training and
skills necessary to design, create, and test computer programs. Computer programming
is an exciting and rewarding career. Today, you will find programmers working in busi-
ness, medicine, government, law enforcement, agriculture, academics, entertainment,
and almost every other field.

This book introduces you to the fundamental concepts of computer programming.
Before we begin exploring those concepts, you need to understand a few basic things
about computers and how they work. This chapter will build a solid foundation of
knowledge that you will continually rely on as you study computer science. First, we
will discuss the physical components that computers are commonly made of. Next, we
will look at how computers store data and execute programs. Finally, we will discuss
the major types of software that computers use.

Figure 1-1 Commonly used programs (courtesy of Microsoft Corporation)

Hardware

CONCEPT: The physical devices that a computer is made of are referred to as
the computer’s hardware. Most computer systems are made of simi-
lar hardware devices.

The term hardware refers to all of the physical devices, or components, that a computer
is made of. A computer is not one single device, but a system of devices that all work
together. Like the different instruments in a symphony orchestra, each device in a com-
puter plays its own part.

If you have ever shopped for a computer, you’ve probably seen sales literature listing com-
ponents such as microprocessors, memory, disk drives, video displays, graphics cards,
and so on. Unless you already know a lot about computers, or at least have a friend who

1.2

M01_GADD1912_06_SE_C01.indd 2 08/12/21 10:35 AM

 1.2 Hardware 3

does, understanding what these different components do can be confusing. As shown
in Figure 1-2, a typical computer system consists of the following major components:

●● The central processing unit (CPU)
●● Main memory
●● Secondary storage devices
●● Input devices
●● Output devices

Let’s take a closer look at each of these components.

The CPU
When a computer is performing the tasks that a program tells it to do, we say that the
computer is running or executing the program. The central processing unit, or CPU, is
the part of a computer that actually runs programs. (The CPU is often referred to as the
processor.) The CPU is the most important component in a computer because without
it, the computer could not run software.

Figure 1-2 Typical components of a computer system

Input
Devices

Central Processing
Unit

Main Memory
(RAM)

Secondary
Storage Devices

Output
Devices

(Photo credits: Webcam Iko/Shutterstock, Joystick Nikita Rogul/Shutterstock, Scanner Feng Yu/Shutterstock, Keyboard
Chiyacat/Shutterstock, Camera Elkostas/Shutterstock, Tablet Tkemot/Shutterstock, Hard disk Vitaly Korovin/Shutter-
stock, Speakers StockPhotosArt/ Shutterstock, Printer Jocic/Shutterstock, Monitors Art gallery/Shutterstock, RAM Peter
Guess/Shutterstock, Chip Aquila/Shutterstock).

M01_GADD1912_06_SE_C01.indd 3 08/12/21 10:35 AM

4 Chapter 1 Introduction to Computers and Programming

In the earliest computers, CPUs were huge devices made of electrical and mechanical
components such as vacuum tubes and switches. Figure 1-3 shows such a device. The
two women in the photo are working with the historic ENIAC computer. The ENIAC,
considered by many to be the world’s first programmable electronic computer, was built
in 1945 to calculate artillery ballistic tables for the U.S. Army. This machine, which was
primarily one big CPU, was 8 feet tall, 100 feet long, and weighed 30 tons.

Today, CPUs are small chips known as microprocessors. Figure 1-4 shows a photo
of a lab technician holding a modern-day microprocessor. In addition to being much

Figure 1-4 A lab technician holds a modern microprocessor (courtesy of
Chris Ryan/OJO Images/Getty Images)

Figure 1-3 The ENIAC computer (courtesy of US Army Center of Military History)

M01_GADD1912_06_SE_C01.indd 4 08/12/21 10:35 AM

 1.2 Hardware 5

smaller than the old electro-mechanical CPUs in early computers, microprocessors are
also much more powerful.

Main Memory
You can think of main memory as the computer’s work area. This is where the computer
stores a program while the program is running, as well as the data that the program is
working with. For example, suppose you are using a word processing program to write
an essay for one of your classes. While you do this, both the word processing program
and the essay are stored in main memory.

Main memory is commonly known as random-access memory, or RAM. It is called this
because the CPU is able to quickly access data stored at any random location in RAM.
RAM is usually a volatile type of memory that is used only for temporary storage while
a program is running. When the computer is turned off, the contents of RAM are erased.
Inside your computer, RAM is stored in chips, similar to the ones shown in Figure 1-5.

Figure 1-5 Memory chips (photo © Garsya/Shutterstock)

NOTE: Another type of memory that is stored in chips inside the computer is read-only
memory, or ROM. A computer can read the contents of ROM, but it cannot change its
contents, or store additional data there. ROM is nonvolatile, which means that it does
not lose its contents, even when the computer’s power is turned off. ROM is typically
used to store programs that are important for the system’s operation. One example is
the computer’s startup program, which is executed each time the computer is started.

Secondary Storage Devices
Secondary storage is a type of memory that can hold data for long periods of time, even
when there is no power to the computer. Programs are normally stored in secondary
memory and loaded into main memory as needed. Important data, such as word process-
ing documents, payroll data, and inventory records, is saved to secondary storage as well.

The most common type of secondary storage device is the disk drive. A traditional disk
drive stores data by magnetically encoding it onto a circular disk. Solid state drives,
which store data in solid-state memory, are increasingly becoming popular. A solid
state drive has no moving parts, and operates faster than a traditional disk drive. Most
computers have some sort of secondary storage device, either a traditional disk drive or
a solid state drive, mounted inside their case. External disk drives, which connect to one
of the computer’s communication ports, are also available. External disk drives can be
used to create backup copies of important data or to move data to another computer.

M01_GADD1912_06_SE_C01.indd 5 08/12/21 10:35 AM

6 Chapter 1 Introduction to Computers and Programming

In addition to external disk drives, many types of devices have been created for copying
data, and for moving it to other computers. Universal Serial Bus drives, or USB drives, are
small devices that plug into the computer’s USB port, and appear to the system as a disk
drive. These drives do not actually contain a disk, however. They store data in a special
type of memory known as flash memory. USB drives, which are also known as memory
sticks and flash drives, are inexpensive, reliable, and small enough to be carried in your
pocket.

NOTE: In recent years, cloud storage has become a popular way to store data. When
you store data in the cloud, you are storing it on a remote server via the Internet,
or via a company’s private network. When your data is stored in the cloud, you can
access it from many different devices, and from any location where you have a net-
work connection. Cloud storage can also be used to back up important data that is
stored on a computer’s disk.

Checkpoint

 1.1 What is a program?

 1.2 What is hardware?

 1.3 List the five major components of a computer system.

 1.4 What part of the computer actually runs programs?

 1.5 What part of the computer serves as a work area to store a program and its
data while the program is running?

 1.6 What part of the computer holds data for long periods of time, even when
there is no power to the computer?

 1.7 What part of the computer collects data from people and from other devices?

 1.8 What part of the computer formats and presents data for people or other devices?

Input Devices
Input is any data the computer collects from people and from other devices. The compo-
nent that collects the data and sends it to the computer is called an input device. Common
input devices are the keyboard, mouse, touchscreen, scanner, microphone, and digital
camera. Disk drives and optical drives can also be considered input devices because
programs and data are retrieved from them and loaded into the computer’s memory.

Output Devices
Output is any data the computer produces for people or for other devices. It might be
a sales report, a list of names, or a graphic image. The data is sent to an output device,
which formats and presents it. Common output devices are video displays and printers.
Disk drives can also be considered output devices because the system sends data to them
in order to be saved.

M01_GADD1912_06_SE_C01.indd 6 08/12/21 10:35 AM

 1.3 How Computers Store Data 7

Figure 1-6 Think of a byte as eight switches

OFF

ON

OFF OFFOFF

ON ON ON

When a piece of data is stored in a byte, the computer sets the eight bits to an on/off
pattern that represents the data. For example, the pattern shown on the left in Figure
1-7 shows how the number 77 would be stored in a byte, and the pattern on the right
shows how the letter A would be stored in a byte. In a moment you will see how these
patterns are determined.

Figure 1-7 Bit patterns for the number 77 and the letter A

The number 77 stored in a byte. The letter A stored in a byte.

OFF

ON

OFF OFFOFF

ON ON ON

OFF

ON

OFF OFF OFF OFF OFF

ON

How Computers Store Data

CONCEPT: All data that is stored in a computer is converted to sequences
of 0s and 1s.

A computer’s memory is divided into tiny storage locations known as bytes. One byte
is only enough memory to store a letter of the alphabet or a small number. In order to
do anything meaningful, a computer has to have lots of bytes. Most computers today
have millions, or even billions, of bytes of memory.

Each byte is divided into eight smaller storage locations known as bits. The term bit
stands for binary digit. Computer scientists usually think of bits as tiny switches that
can be either on or off. Bits aren’t actual “switches,” however, at least not in the conven-
tional sense. In most computer systems, bits are tiny electrical components that can hold
either a positive or a negative charge. Computer scientists think of a positive charge as
a switch in the on position, and a negative charge as a switch in the off position. Figure
1-6 shows the way that a computer scientist might think of a byte of memory: as a col-
lection of switches that are each flipped to either the on or off position.

1.3

M01_GADD1912_06_SE_C01.indd 7 08/12/21 10:35 AM

8 Chapter 1 Introduction to Computers and Programming

Storing Numbers
A bit can be used in a very limited way to represent numbers. Depending on whether the
bit is turned on or off, it can represent one of two different values. In computer systems,
a bit that is turned off represents the number 0 and a bit that is turned on represents
the number 1. This corresponds perfectly to the binary numbering system. In the binary
numbering system (or binary, as it is usually called) all numeric values are written as
sequences of 0s and 1s. Here is an example of a number that is written in binary:

10011101

The position of each digit in a binary number has a value assigned to it. Starting with
the rightmost digit and moving left, the position values are 2 , 2 , 2 , 2 ,0 1 2 3 and so forth,
as shown in Figure 1-8. Figure 1-9 shows the same diagram with the position values
calculated. Starting with the rightmost digit and moving left, the position values are 1,
2, 4, 8, and so forth.

Figure 1-8 The values of binary digits as powers of 2

1 0 0 1 1 1 0 1
20

21

22

23

24

25

26

27

Figure 1-9 The values of binary digits

1 0 0 1 1 1 0 1
 1
 2
 4
 8
 16
 32
 64
128

To determine the value of a binary number you simply add up the position values of
all the 1s. For example, in the binary number 10011101, the position values of the 1s
are 1, 4, 8, 16, and 128. This is shown in Figure 1-10. The sum of all of these position
values is 157. So, the value of the binary number 10011101 is 157.

M01_GADD1912_06_SE_C01.indd 8 08/12/21 10:35 AM

 1.3 How Computers Store Data 9

Figure 1-10 Determining the value of 10011101

1 0 0 1 1 1 0 1
 1

 4
 8
 16

128

1 + 4 + 8 + 16 + 128 = 157

Figure 1-11 The bit pattern for 157

128 + 16 + 8 + 4 + 1 = 157

128 64 32 16 8 4 2 1
Position
values

1

0

111 1

0 0

When all of the bits in a byte are set to 0 (turned off), then the value of the byte is 0.
When all of the bits in a byte are set to 1 (turned on), then the byte holds the larg-
est value that can be stored in it. The largest value that can be stored in a byte is
+ + + + + + + =1 2 4 8 16 32 64 128 255. This limit exists because there are

only eight bits in a byte.

What if you need to store a number larger than 255? The answer is simple: use more
than one byte. For example, suppose we put two bytes together. That gives us 16 bits.
The position values of those 16 bits would be 2 , 2 , 2 , 2 ,0 1 2 3 and so forth, up through
2 .15 As shown in Figure 1-12, the maximum value that can be stored in two bytes is
65,535. If you need to store a number larger than this, then more bytes are necessary.

Figure 1-12 Two bytes used for a large number

32768 + 16384 + 8192 + 4096 + 2048 + 1024 + 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 65535

128 64 32 16 8 4 2 116384 8192 4096 2048 512 256102432768Position
values

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 1-11 shows how you can picture the number 157 stored in a byte of memory.
Each 1 is represented by a bit in the on position, and each 0 is represented by a bit in
the off position.

M01_GADD1912_06_SE_C01.indd 9 08/12/21 10:35 AM

